Reliability and Performance Testing
for Kubernetes Operators

Olga Mirensky

Platform Engineer, ANZ Plus

Agenda

O Introduction

© Why build operators

© Operators performance
© Performance testing

O Testing frameworks

O Q&A

Settle
Home
Loan

Access a
refinance
coach

Customer

can be
uniquely
identified

Social
Media

Coach
evaluation

Digital
wallet

Pay off
and close
home loan

Appointme
nt Booking

Submit
property
insurance

Spending
Limits

Coaches
workbench

OB data
out

Migrated

from ANZ

obligations

Dashboar
ds metrics

and

reporting

Refinance
their home
loan

Manage
Payees

Set up
account

Transfer
money
BSB and
ACCT#

Observabil
ity of
systems

Set up
account

Block
gambling
transactio

n

Security
controls

Money in
money out

Step up ID

Upcoming
Expenses

Transac
t&
Save

Open
Banking

Assess
customer
risk profile

Exit a
customer

Centralised
pricing
managemen
t

See
interest
rates

Replace
Card

Update
personal
informatio
n

Close
Account

Automated

credit risk

assessme
nt

QA
program

Activate
Card

Install the
app

Welcome
pack

Verify
identity

Recover
credentials

Financial
wellbeing
nudges

Receive
Card

Operators vs Crossplane or False

Dichotomy?

Static Client-Side Generation

+ Reduce server-side complexity
+ Less runtime resources
+ Predictability

- hard to propagate config or implementation

change

Operators

+ Full implementation control

+ Custom business logic and extensibility
+ Event Driven

- Complexity developing and maintaining
- Skillset

Crossplane / KCC Composition

+ No custom code

+ Define high level abstractions with composition
+ Extensibility

- Tool sprawl

- CNCF Incubating project

But why not Bot

$ x workspace create --name demo-workspace --env 'dev, si
uat, prod’ —enable-kube —enable-cloudrun

Interface

Intent State

> —pr— Cl —Q—Q— CD —

h?

t,

Q

A s Create Workspace

WE Catalog
@ Workspace
N APIs
|8 Docs

R Adv. Search

@ Tech Radar

N, \Validator

Abstraction

Desired State

Create a New Component

Create new software components using standard templates

—
-
X

—(’—« OCl)
‘////

Operators + KCC

Custom Primitives
Resources

o
-
L X) Q

%)

3 Cloud And External

O

Resources

Reconciliation Loop

Client-go 1. List and Watch @% Kubernetes API FUH k8S pay|Oad IS StOI’ed N
memory for all relevant
Thread-Safe Store resources for all controllers
(Cache)
2-5. Store
A k8s Resources . . .
6. Dispatch Event B payload Everything is reconciled at once
client-go on start-up and each Cache
e ceUee BUant custom controller Sync (10hrs)
Handlers Writes
9. Get Object(s) (if needed)
7. Enqueue Key(s)
workqueue
A 8. Get Key - Procacs lbam
— P x MaxConcurrentReconciles

Process ltem

Based on "Client-go under the hood”

https:/github.com/kubernetes/sample-controller/blob/master/docs/controller-client-go.md

https://github.com/kubernetes/sample-controller/blob/master/docs/controller-client-go.md

Operators: Software

Software

tngineering P oo Engineering meets Kubernetes

Development

. Isolated Go functions A

Unit Test : =GO
and logic.
Simulated in-memory

Envtest
k8s API server
Declarative test in a real

e2e Test
cluster (cloud or kind)

Performance ~——_ today’s focus

Testing

Performance

Load Test Objectives

Test how system performs under load + Define SLOs

close to normal expected levels.
« Capacity planning
Benchmark system performance to

catch regressions « Regression detection

* Performance troubleshooting
Stress Test

* Inform design decisions
Test for system limits and breaking points

by applying load higher than anticipated
INn normal operation. Useful for capacity

planning, test graceful failure, plan

Disaster Recovery.

Load Test
/- Render and apply resources \

« Control concurrency

« Multiple namespaces

 Introduce controlled failures

-

\.

e Monitor and collect metrics

Qﬁ Test Engine J

« Compare results between runs
» Assist in troubleshooting when an
issue is identified

& Cleanup Y.

6 Operator
Under Test

(@ Test Suite
s

« Resource templates
« Test specification

« Steps and expected outcomes

\ W,

Reproducible Test

Q5 Environment

K CPU & Memory requests == [imits)
« Consistent state before run
e Cluster environment

« Rate limiting

K Priority and Fairness /

k‘!) Metrics and Reports

External
Dependencies

» Cloud resources and other operators

» Balance between mocking and

representative real-world results

\

~N

W,

Load Test
/- Render and apply resources \

« Control concurrency

« Multiple namespaces

 Introduce controlled failures

-

\.

e Monitor and collect metrics

Qﬁ Test Engine J

« Compare results between runs
» Assist in troubleshooting when an
issue is identified

& Cleanup Y.

6 Operator
Under Test

(@ Test Suite
s

« Resource templates
« Test specification

« Steps and expected outcomes

\ W,

Reproducible Test

Q5 Environment

K CPU & Memory requests == [imits)
« Consistent state before run
e Cluster environment

« Rate limiting

K Priority and Fairness /

k‘!) Metrics and Reports

External
Dependencies

» Cloud resources and other operators

» Balance between mocking and

representative real-world results

\

~N

W,

No Standard Load Testing Framework
No generic, standardised framework specifically designed

for load testing Kubernetes operators.

CRs !'= HTTP Requests

Standard load testing tools are built with web traffic in

Operators
mind. Can be used if operator’s functionality is exposed as
Load Test

Targets and Dimensions

Cha I Ienges Unlike web-based apps load testing which are usually defined

In terms of end-user volume, for operators it is harder to

identify targets — number of services, teams or custom
attributes?
External Resources
Creating external resources may incur undesirable cost.
Emulating dependencies on the other hand, may lead to
results that are not representative of real production

performance.

Declarative e2e Testing

apiVersion: chainsaw.kyverno.io/vlalphal chainsaw/single-cnp
: «g0:53: =33 ingle- CH : 2
kind: Test 1 53: | 14:33:41 s%ng e-cnp PAT netoperator.platform.x.anz
1.90:53: | 14:33:41 | single-cnp APPLY netoperator.platform.x.anz
metadata: 1.go:53: | 14:33:41 | single-cnp ASSERT networking.k8s.io/v1/Netwo
1l.go:53: | 14:33:41 single-cnp ASSERT networking.k8s.io/v1/Netwo
name: example 1.g0:53: | 14:33:41 | single-cnp TRY
spec: 1.g0:53: | 14:33:41 | single-cnp TRY
1.g0:53: | 14:33:41 | single-cnp APPLY netoperator.platform.x.anz
concurrent: false 1.g0:53: | 14:33:41 | single-cnp PATCH netoperator.platform.x.anz
, 1.g0:53: | 14:33:41 | single-cnp APPLY netoperator.platform.x.anz
timeouts: e S ; : .
1.g0:53: | 14:33:41 | single-cnp ASSERT networking.k8s.io/v1/Netwo
a}p}DJ.y': 10s 1.g0:53: | 14:33:41 | single-cnp ASSERT networking.k8s.io/v1/Netwo
1.g0:53: | 14:33:41 | single-cnp TRY
assert: 10s 1.g0:53: | 14:33:41 | single-cnp CLEANUP
1.go0:53: | 14:33:41 | single-cnp DELETE networking.k8s.io/v1/Netwo
error: 10s iy A : ; :
1.90:53: | 14:33:42 | single-cnp DELETE networking.k8s.io/v1/Netwo
S1:EEEDS . 1l.go:53: | 14:33:42 single-cnp DELETE networking.k8s.io/v1/Netwo
1.g0:53: | 14:33:42 | single-cnp DELETE vl/Namespace @ test-cluste
- Lry: 1.g0:53: | 14:33:42 | single-cnp DELETE vl/Namespace @ test-cluste
- apply:
file: ../resources/good-resource.yaml
- try:
— assert:

file: ../resources/expected-result.yaml
- try:

- error: A

file: ../resources/bad-resource.yaml
Kyverno

Cluster Loader 2

https://github.com/kubernetes/perf-tests/blob/master/clusterloader2/docs/design.md

+ Powerful test engine

+ Templating support

+ Concurrency and QPS support K
+ Support for Generic Custom Resources [
+ Step types: run, measure, report. {
+ Built-in Prometheus or BYO

+ Open Source

+ Chaos features — need to explore more.

+ We don't need to write our own tool

- Not designed as a generic operator testing framework

" - - Initial learning curve — docs are not descriptive enough,
' requires trial and error and diving in source code.
/' &

- OOTB measurements aimed for testing k8s components.

- Built in prometheus is not straight-forward.

test.yaml

name: LoadTest-MyTest

tuningSets:
- name: Parallelb
gpsLoad:
gps: 10

parallelism: 4

steps:
- name: run test

phases:

- tuningSet: Parallelb

replicasPerNamespace:

namespaceRange:
min: 1
max: 20

objectBundle:

- basename: cl2-cr
objectTemplatePath:
templateFillMap:

\\fOO//

varName :

Concurrency

configurable per phase

50 '

Deploy resources across

my-cr-tmpl.yaml

apiVersion: example.com/vlalphal
kind: MyCr
metadata:

labels:

app: label

name: {{.Name}}

namespace: {{.Namespace}}
spec:

myKey: {{.varName}}

restOfTheSpec:

to “base-<sha>-20"

\

namespaces “base-<sha>-1"

~

W,

"my-cr—-tmpl.yaml”

[Template vars }

Measurements and Metrics

- name: Wait for objects to be ready — name: Start measurements
measurements: measurements:

- Method: WaitForGenericK8sObjects - Identifier: gq

. . Method: GenericPrometheusQuery
Identifier: WaltForMyCR

Params:

SEUEETIS ¢ action: start
objectGroup/Version/Resource metricName: Controller reconcile
namespaceRange: ... metricVersion: vl
timeout: 200s unit: total

successfulConditions: querlies:

- name: reconcileTimeSeconds
— Ready=True

query: <prom-guery>
minDesiredObjectCount: 1

maxFailedObjectCount: 1 - name: Gather measurements

measurements:
— Identifier: gq
a N Method: GenericPrometheusQuery

Params:

More methods supported for
. action: gather
core k8s components metrics

. /

enableViolations: true

