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Operators vs Crossplane or False

Dichotomy?

Static Client-Side Generation

+ Reduce server-side complexity
+ Less runtime resources
+ Predictability

- hard to propagate config or implementation

change

Operators

+ Full implementation control

+ Custom business logic and extensibility
+ Event Driven

- Complexity developing and maintaining
- Skillset

Crossplane / KCC Composition

+ No custom code

+ Define high level abstractions with composition
+ Extensibility

- Tool sprawl

- CNCF Incubating project




But why not Bot

$ x workspace create --name demo-workspace --env 'dev, si
uat, prod’ —enable-kube —enable-cloudrun
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Create new software components using standard templates
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Reconciliation Loop

Client-go 1. List and Watch @% Kubernetes API FUH k8S pay|Oad IS StOI’ed N
memory for all relevant
Thread-Safe Store resources for all controllers
(Cache)
2-5. Store
A k8s Resources . . .
6. Dispatch Event B payload Everything is reconciled at once
client-go on start-up and each Cache
e ceUee BUant custom controller Sync (10hrs)
Handlers Writes
9. Get Object(s) (if needed)
7. Enqueue Key(s)
workqueue
A 8. Get Key - Procacs lbam
— P x MaxConcurrentReconciles

Process ltem

Based on "Client-go under the hood”

https:/github.com/kubernetes/sample-controller/blob/master/docs/controller-client-go.md



https://github.com/kubernetes/sample-controller/blob/master/docs/controller-client-go.md

Operators: Software

Software

tngineering P oo Engineering meets Kubernetes

Development

. Isolated Go functions A

Unit Test : =GO
and logic.
Simulated in-memory

Envtest
k8s API server
Declarative test in a real

e2e Test
cluster (cloud or kind)

Performance ~——_  today’s focus

Testing







Performance

Load Test Objectives

Test how system performs under load + Define SLOs

close to normal expected levels.
« Capacity planning
Benchmark system performance to

catch regressions « Regression detection

* Performance troubleshooting
Stress Test

* Inform design decisions
Test for system limits and breaking points

by applying load higher than anticipated
INn normal operation. Useful for capacity

planning, test graceful failure, plan

Disaster Recovery.



Load Test
/- Render and apply resources \

« Control concurrency

« Multiple namespaces

 Introduce controlled failures

-

\.

e Monitor and collect metrics

Qﬁ Test Engine J

« Compare results between runs
» Assist in troubleshooting when an
issue is identified

& Cleanup Y.

6 Operator
Under Test

( @ Test Suite
s

« Resource templates
« Test specification

« Steps and expected outcomes
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Reproducible Test

Q5 Environment

K CPU & Memory requests == [imits )
« Consistent state before run
e Cluster environment

« Rate limiting

K Priority and Fairness /

k‘! ) Metrics and Reports

External
Dependencies

» Cloud resources and other operators

» Balance between mocking and

representative real-world results

\

~N

W,




Load Test
/- Render and apply resources \

« Control concurrency

« Multiple namespaces

 Introduce controlled failures

-

\.

e Monitor and collect metrics

Qﬁ Test Engine J

« Compare results between runs
» Assist in troubleshooting when an
issue is identified

& Cleanup Y.

6 Operator
Under Test

( @ Test Suite
s

« Resource templates
« Test specification

« Steps and expected outcomes

\ W,

Reproducible Test

Q5 Environment

K CPU & Memory requests == [imits )
« Consistent state before run
e Cluster environment

« Rate limiting

K Priority and Fairness /

k‘! ) Metrics and Reports

External
Dependencies

» Cloud resources and other operators

» Balance between mocking and

representative real-world results

\

~N

W,




No Standard Load Testing Framework
No generic, standardised framework specifically designed

for load testing Kubernetes operators.

CRs !'= HTTP Requests

Standard load testing tools are built with web traffic in

Operators
mind. Can be used if operator’s functionality is exposed as
Load Test

Targets and Dimensions

Cha I Ienges Unlike web-based apps load testing which are usually defined

In terms of end-user volume, for operators it is harder to

identify targets — number of services, teams or custom
attributes?
External Resources
Creating external resources may incur undesirable cost.
Emulating dependencies on the other hand, may lead to
results that are not representative of real production

performance.







Declarative e2e Testing

apiVersion: chainsaw.kyverno.io/vlalphal chainsaw/single-cnp
: «g0:53: =33 ingle- CH : 2
kind: Test 1 53: | 14:33:41 s%ng e-cnp PAT netoperator.platform.x.anz
1.90:53: | 14:33:41 | single-cnp APPLY netoperator.platform.x.anz
metadata: 1.go:53: | 14:33:41 | single-cnp ASSERT networking.k8s.io/v1/Netwo
1l.go:53: | 14:33:41 single-cnp ASSERT networking.k8s.io/v1/Netwo
name: example 1.g0:53: | 14:33:41 | single-cnp TRY
spec: 1.g0:53: | 14:33:41 | single-cnp TRY
1.g0:53: | 14:33:41 | single-cnp APPLY netoperator.platform.x.anz
concurrent: false 1.g0:53: | 14:33:41 | single-cnp PATCH netoperator.platform.x.anz
, 1.g0:53: | 14:33:41 | single-cnp APPLY netoperator.platform.x.anz
timeouts: e S ; : .
1.g0:53: | 14:33:41 | single-cnp ASSERT networking.k8s.io/v1/Netwo
a}p}DJ.y': 10s 1.g0:53: | 14:33:41 | single-cnp ASSERT networking.k8s.io/v1/Netwo
1.g0:53: | 14:33:41 | single-cnp TRY
assert: 10s 1.g0:53: | 14:33:41 | single-cnp CLEANUP
1.go0:53: | 14:33:41 | single-cnp DELETE networking.k8s.io/v1/Netwo
error: 10s iy A : ; :
1.90:53: | 14:33:42 | single-cnp DELETE networking.k8s.io/v1/Netwo
S1:EEEDS . 1l.go:53: | 14:33:42 single-cnp DELETE networking.k8s.io/v1/Netwo
1.g0:53: | 14:33:42 | single-cnp DELETE vl/Namespace @ test-cluste
- Lry: 1.g0:53: | 14:33:42 | single-cnp DELETE vl/Namespace @ test-cluste
- apply:
file: ../resources/good-resource.yaml
- try:
— assert:

file: ../resources/expected-result.yaml
- try:

- error: A

file: ../resources/bad-resource.yaml
Kyverno



Cluster Loader 2

https://github.com/kubernetes/perf-tests/blob/master/clusterloader2/docs/design.md

+ Powerful test engine

+ Templating support

+ Concurrency and QPS support K
+ Support for Generic Custom Resources [
+ Step types: run, measure, report. {
+ Built-in Prometheus or BYO

+ Open Source

+ Chaos features — need to explore more.

+ We don't need to write our own tool

- Not designed as a generic operator testing framework

" - - Initial learning curve — docs are not descriptive enough,
' requires trial and error and diving in source code.
/' &

- OOTB measurements aimed for testing k8s components.

- Built in prometheus is not straight-forward.



test.yaml

name: LoadTest-MyTest

tuningSets:
- name: Parallelb
gpsLoad:
gps: 10

parallelism: 4

steps:
- name: run test

phases:

- tuningSet: Parallelb

replicasPerNamespace:

namespaceRange:
min: 1
max: 20

objectBundle:

- basename: cl2-cr
objectTemplatePath:
templateFillMap:

\\fOO//

varName :

Concurrency

configurable per phase

50 '

Deploy resources across

my-cr-tmpl.yaml

apiVersion: example.com/vlalphal
kind: MyCr
metadata:

labels:

app: label

name: {{.Name}}

namespace: {{.Namespace}}
spec:

myKey: {{.varName}}

restOfTheSpec:

to “base-<sha>-20"

\

namespaces “base-<sha>-1"

~

W,

"my-cr—-tmpl.yaml”

[Template vars }




Measurements and Metrics

- name: Wait for objects to be ready — name: Start measurements
measurements: measurements:

- Method: WaitForGenericK8sObjects - Identifier: gq

. . Method: GenericPrometheusQuery
Identifier: WaltForMyCR

Params:

SEUEETIS ¢ action: start
objectGroup/Version/Resource metricName: Controller reconcile
namespaceRange: ... metricVersion: vl
timeout: 200s unit: total

successfulConditions: querlies:

- name: reconcileTimeSeconds
— Ready=True

query: <prom-guery>
minDesiredObjectCount: 1

maxFailedObjectCount: 1 - name: Gather measurements

measurements:
— Identifier: gq
a N Method: GenericPrometheusQuery

Params:

More methods supported for
. action: gather
core k8s components metrics

. /

enableViolations: true







