
Reliability and Performance Testing
for Kubernetes Operators

Olga Mirensky
Platform Engineer, ANZ Plus

Testing frameworks

Agenda

Why build operators

Operators performance

Performance testing

Q & A

Introduction

API Driven Platform

Process
outstandin

g
payments

Disputes

Hardships
support

Vulnerable
Access
support

Deceased
Estates

Manage
their loan

Power of
Attorney

Marketpla
ce

In app
Card

details

Share and
export

transactio
ns

Create
PayID

PayID
transfers

Publish to
market

Round
Ups

Statement
s

Manage
transactio

n
categories

Wellbeing
insights

Garmin
Pay

Fitbit Pay

Split
payments

Internation
al Money
Transfer

Create
Digital
Identity

Central
product

managemen
t

Purchase
a property

and
advise
ANZ

Set up
offset

accounts

View and
manage

their
financial
position

View and
accept

loan offer

Send
notification

s and
nudges

Cash
without a

card

Content as
a service

Fit for
purpose

platforms,
developer

tooling
and

framework
s

Manage
loan book

pricing

Calculate,
display

and
manage
charges

and
interest on

loans

Explore
the loan

propositio
n

Detect
fraud,

scams and
identity
events

Credit
oversight

Apra
Complianc

e

Complete
and

application

View and
manage

their
portfolio

Accreditati
on with

ANZ

Approval
Confidenc

e

Broker
Managed
settlement

Get help
on 'classic'
application

s

Explore
offers

Finalise
loan

Access a
coach

Voice

Chat

NPS

Social
Media

Waitlist

Appointme
nt Booking

Complaint
s

WFM

Coach
evaluation

Collection
s

Close
Account

Activate
Card

Replace
Card

Manage
Card

Access

Card
blocks

Manage
Payees

Set up
account

Virtual
Goals

Install the
app

See
interest
rates

Spending
Limits

Money in
money out

Transfer
money

BSB and
ACCT#

BPAY

Payment
History

Open
Banking

Set up
account

Receive
Card

Manage
Pin

Welcome
pack

Financial
wellbeing
nudges

Coaches
workbench

Payment
Limits

Migrated
from ANZ

Upcoming
Expenses

Exit a
customer

Update
personal

informatio
n

Verify
identity

Recover
credentials

OB data
out

obligations

Centralised
pricing

managemen
t

Customer
can be

uniquely
identified

Refinance
their home

loan

Submit
property

insurance

Pay off
and close
home loan

Assess
customer
risk profile

QA
program

Journey
support

Access a
refinance

coach

Security
controls

Observabil
ity of

systems

Automated
credit risk
assessme

nt

Dashboar
ds metrics

and
reporting

Block
gambling
transactio

n

Step up ID

Leads

Settle
Home
Loan

Digital
wallet

Transac
t &

Save

Brokers

Loans

Coach

Operators vs Crossplane or False
Dichotomy?

+ Reduce server-side complexity

+ Less runtime resources

+ Predictability

- hard to propagate config or implementation
change

Static Client-Side Generation

+ No custom code
+ Define high level abstractions with composition
+ Extensibility
- Tool sprawl
- CNCF Incubating project

Crossplane / KCC Composition

Operators

+ Full implementation control
+ Custom business logic and extensibility
+ Event Driven
- Complexity developing and maintaining
- Skillset

But why not Both?
$ x workspace create --name demo-workspace --env 'dev, sit,
uat, prod’ –-enable-kube –-enable-cloudrun

Operators Intro and Challenges

Reconciliation Loop

Based on ”Client-go under the hood”

https://github.com/kubernetes/sample-controller/blob/master/docs/controller-client-go.md

Full k8s payload is stored in

memory for all relevant

resources for all controllers

Everything is reconciled at once

on start-up and each Cache

Sync (10hrs)

https://github.com/kubernetes/sample-controller/blob/master/docs/controller-client-go.md

Software
Engineering

Operators
Development

Envtest

e2e Test

Unit Test Isolated Go functions
and logic.

Simulated in-memory
k8s API server

Declarative test in a real
cluster (cloud or kind)

Performance
Testing

Today’s focus

Operators: Software
Engineering meets Kubernetes

Performance Testing

Performance Testing

Test how system performs under load

close to normal expected levels.

Benchmark system performance to

catch regressions

Load Test

Test for system limits and breaking points

by applying load higher than anticipated

in normal operation. Useful for capacity

planning, test graceful failure, plan

Disaster Recovery.

Stress Test

Objectives

• Define SLOs

• Capacity planning

• Regression detection

• Performance troubleshooting

• Inform design decisions

Load Test

• Resource templates

• Test specification

• Steps and expected outcomes

• Render and apply resources

• Control concurrency

• Multiple namespaces

• Introduce controlled failures

• Monitor and collect metrics

• Cleanup

• CPU & Memory requests == limits

• Consistent state before run

• Cluster environment

• Rate limiting

• Priority and Fairness

• Cloud resources and other operators

• Balance between mocking and

representative real-world results

• Compare results between runs

• Assist in troubleshooting when an

issue is identified

Load Test

• Resource templates

• Test specification

• Steps and expected outcomes

• Render and apply resources

• Control concurrency

• Multiple namespaces

• Introduce controlled failures

• Monitor and collect metrics

• Cleanup

• CPU & Memory requests == limits

• Consistent state before run

• Cluster environment

• Rate limiting

• Priority and Fairness

• Cloud resources and other operators

• Balance between mocking and

representative real-world results

• Compare results between runs

• Assist in troubleshooting when an

issue is identified

01

02

External Resources

Creating external resources may incur undesirable cost.

Emulating dependencies on the other hand, may lead to

results that are not representative of real production

performance.

03

CRs != HTTP Requests

Standard load testing tools are built with web traffic in

mind. Can be used if operator’s functionality is exposed as

API.

04

No Standard Load Testing Framework

No generic, standardised framework specifically designed

for load testing Kubernetes operators.

Operators
Load Test
Challenges

Targets and Dimensions

Unlike web-based apps load testing which are usually defined

in terms of end-user volume, for operators it is harder to

identify targets – number of services, teams or custom

attributes?

Testing Frameworks

Declarative e2e Testing

apiVersion: chainsaw.kyverno.io/v1alpha1

kind: Test

metadata:

 name: example

spec:

 concurrent: false

 timeouts:

 apply: 10s

 assert: 10s

 error: 10s

 steps:

 - try:

 - apply:

 file: ../resources/good-resource.yaml

 - try:

 - assert:

 file: ../resources/expected-result.yaml

 - try:

 - error:

 file: ../resources/bad-resource.yaml

Cluster Loader 2
https://github.com/kubernetes/perf-tests/blob/master/clusterloader2/docs/design.md

+ Powerful test engine

+ Templating support

+ Concurrency and QPS support

+ Support for Generic Custom Resources

+ Step types: run, measure, report.

+ Built-in Prometheus or BYO

+ Open Source

+ Chaos features – need to explore more.

+ We don’t need to write our own tool

- Not designed as a generic operator testing framework

- Initial learning curve – docs are not descriptive enough,

requires trial and error and diving in source code.

- OOTB measurements aimed for testing k8s components.

- Built in prometheus is not straight-forward.

name: LoadTest-MyTest

tuningSets:

 - name: Parallel5

 qpsLoad:

 qps: 10

 parallelism: 4

steps:

- name: run test

 phases:

 - tuningSet: Parallel5

 replicasPerNamespace: 50

 namespaceRange:

 min: 1

 max: 20

 objectBundle:

 - basename: cl2-cr

 objectTemplatePath: ”my-cr-tmpl.yaml”

 templateFillMap:

 varName: “foo”

Concurrency

configurable per phase

test.yaml my-cr-tmpl.yaml

Deploy resources across

namespaces “base-<sha>-1”

to “base-<sha>-20”

Template vars

apiVersion: example.com/v1alpha1

kind: MyCr

metadata:

 labels:

 app: label

 name: {{.Name}}

 namespace: {{.Namespace}}

spec:

 myKey: {{.varName}}

 restOfTheSpec:

Measurements and Metrics

- name: Wait for objects to be ready

 measurements:

 - Method: WaitForGenericK8sObjects

 Identifier: WaitForMyCR

 Params:

 objectGroup/Version/Resource

 namespaceRange: ...

 timeout: 200s

 successfulConditions:

 - Ready=True

 minDesiredObjectCount: 1

 maxFailedObjectCount: 1

- name: Start measurements
 measurements:
 - Identifier: gq
 Method: GenericPrometheusQuery
 Params:
 action: start
 metricName: Controller reconcile
 metricVersion: v1
 unit: total
 queries:
 - name: reconcileTimeSeconds
 query: <prom-query>

- name: Gather measurements
 measurements:
 - Identifier: gq
 Method: GenericPrometheusQuery
 Params:
 action: gather
 enableViolations: true

More methods supported for

core k8s components metrics

Q & A

