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API Driven Platform
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Operators vs Crossplane or False 
Dichotomy?

+  Reduce server-side complexity

+  Less runtime resources

+  Predictability

-   hard to propagate config or implementation 
change

Static Client-Side Generation

+ No custom code
+ Define high level abstractions with composition
+ Extensibility
- Tool sprawl
- CNCF Incubating project

Crossplane / KCC Composition

Operators

+  Full implementation control
+  Custom business logic and extensibility
+  Event Driven
-  Complexity developing and maintaining
-  Skillset



But why not Both?
$ x workspace create --name demo-workspace --env 'dev, sit, 
uat, prod’ –-enable-kube –-enable-cloudrun



Operators Intro and Challenges



Reconciliation Loop

Based on ”Client-go under the hood”

https://github.com/kubernetes/sample-controller/blob/master/docs/controller-client-go.md 

Full k8s payload is stored in 

memory for all relevant 

resources for all controllers

Everything is reconciled at once 

on start-up and each Cache 

Sync (10hrs)

https://github.com/kubernetes/sample-controller/blob/master/docs/controller-client-go.md


Software
Engineering

Operators
Development

Envtest

e2e Test

Unit Test Isolated Go functions 
and logic.

Simulated in-memory 
k8s API server

Declarative test in a real 
cluster (cloud or kind)

Performance 
Testing

Today’s focus

Operators: Software 
Engineering meets Kubernetes



Performance Testing



Performance Testing

Test how system performs under load 

close to normal expected levels. 

Benchmark system performance to 

catch regressions

Load Test

Test for system limits and breaking points 

by applying load higher than anticipated 

in normal operation. Useful for capacity 

planning, test graceful failure, plan 

Disaster Recovery.

Stress Test

Objectives

• Define SLOs

• Capacity planning

• Regression detection

• Performance troubleshooting

• Inform design decisions



Load Test

• Resource templates

• Test specification

• Steps and expected outcomes

• Render and apply resources

• Control concurrency

• Multiple namespaces

• Introduce controlled failures

• Monitor and collect metrics

• Cleanup

• CPU & Memory requests == limits

• Consistent state before run

• Cluster environment

• Rate limiting

• Priority and Fairness

• Cloud resources and other operators

• Balance between mocking and 

representative real-world results

• Compare results between runs

• Assist in troubleshooting when an 

issue is identified
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01

02

External Resources

Creating external resources may incur undesirable cost. 

Emulating dependencies on the other hand, may lead to 

results that are not representative of real production 

performance.

03

CRs != HTTP Requests

Standard load testing tools are  built with web traffic in 

mind. Can be used if operator’s functionality is exposed as 

API.

04

No Standard Load Testing Framework

No generic, standardised framework specifically designed 

for load testing Kubernetes operators.

Operators 
Load Test 
Challenges

Targets and Dimensions

Unlike web-based apps load testing which are usually defined 

in terms of end-user volume, for operators it is harder to 

identify targets – number of services, teams or custom 

attributes? 



Testing Frameworks



Declarative e2e Testing

apiVersion: chainsaw.kyverno.io/v1alpha1

kind: Test

metadata:

  name: example

spec:

  concurrent: false

  timeouts:

    apply: 10s

    assert: 10s

    error: 10s

  steps:

  - try:

    - apply:

        file: ../resources/good-resource.yaml

  - try:

    - assert:

        file: ../resources/expected-result.yaml

  - try:

    - error:

        file: ../resources/bad-resource.yaml



Cluster Loader 2
https://github.com/kubernetes/perf-tests/blob/master/clusterloader2/docs/design.md

+ Powerful test engine

+ Templating support

+ Concurrency and QPS support

+ Support for Generic Custom Resources

+ Step types: run, measure, report.

+ Built-in Prometheus or BYO

+ Open Source

+ Chaos features – need to explore more.

+ We don’t need to write our own tool

- Not designed as a generic operator testing framework

- Initial learning curve – docs are not descriptive enough, 

requires trial and error and diving in source code.

- OOTB measurements aimed for testing k8s components.

- Built in prometheus is not straight-forward.



name: LoadTest-MyTest

 

tuningSets:

  - name: Parallel5

    qpsLoad:

      qps: 10

      parallelism: 4

 

steps:

- name: run test

  phases:

    - tuningSet: Parallel5

      replicasPerNamespace: 50

      namespaceRange:

        min: 1

        max: 20

      objectBundle:

        - basename: cl2-cr

          objectTemplatePath: ”my-cr-tmpl.yaml”

          templateFillMap:

            varName: “foo”

Concurrency 

configurable per phase

test.yaml my-cr-tmpl.yaml

Deploy resources across 

namespaces “base-<sha>-1” 

to “base-<sha>-20”

Template vars

apiVersion: example.com/v1alpha1

kind: MyCr

metadata:

  labels:

    app: label

  name: {{.Name}}

  namespace: {{.Namespace}}

spec:

  myKey: {{.varName}}

  restOfTheSpec: ....



Measurements and Metrics

- name: Wait for objects to be ready

  measurements:

    - Method: WaitForGenericK8sObjects

      Identifier: WaitForMyCR

      Params:

        objectGroup/Version/Resource

        namespaceRange: ...

        timeout: 200s

        successfulConditions:

        - Ready=True

        minDesiredObjectCount: 1

        maxFailedObjectCount: 1

- name: Start measurements
  measurements:
    - Identifier: gq
      Method: GenericPrometheusQuery
      Params:
        action: start
        metricName: Controller reconcile
        metricVersion: v1
        unit: total
        queries:
          - name: reconcileTimeSeconds
            query: <prom-query>

- name: Gather measurements
  measurements:
    - Identifier: gq
      Method: GenericPrometheusQuery
      Params:
        action: gather
        enableViolations: true

More methods supported for 

core k8s components metrics



Q & A


