Managing Kubernetes
AUSTRALIA Clusters on Spot Instances
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Agenda

e Motivation for Spot Instances
o Reserved Instances (RIl), Committed User Discounts (CUD), etc.
o Spot Instances

o Focus on underlying VMs cost, not workload right-sizing

Managing k8s and applications running on Spot
e Unknown unknowns

e Takeaways



Compute Backed by Availability SLA

e On-demand

e Resource Based
o Reserved Instances (RI), Convertible, Committed Use Discounts (CUD)
o  AWS: 1yr - 40%, 3yr - 60%
o  GCP:1yr - 37%, 3yr - up to 57% / '70%
e Spend Based
o AWS Saving Plans: 3yr - up to 72%
o GCP Flex CUD: 1yr - 28%, 3yr - 46%

Long-term commitment & doesn’t cover 100% of your compute



Spot Instances 10,000 Foot Overview

Discount

Notice

Price Update

Options (not
exhaustive)

Price Insights

) Google Cloud
60 - 91%

30 sec

Once a month

One size fits all

Difficult. API, Cost
table

aws
70 - 90%

2 min,
Rebalance
recommendation

Can be frequent

Price and/or capacity
optimised

Easy. aws ec2
describe-spot-price-hi
story”

Spot instance advisor

/AAzure
Up to 90%

30 sec

Variable

Set your own max
price

Portal price/eviction
history, API
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Common Patterns




Handling Spot Preemptions

Stateless )\ Stateful
Interactive web applications I\ CICD (e.g. terraform
Batch processing jobs apply)

Application Graceful Shutdown
e SIGTERM handler
e Stop accepting new work

e Finalise in-flight work Preemption notice: 30 sec

K8s Node Graceful Shutdown > >

e Node NotReady Worl;l;)ad pods SystSem pods
sec sec

e SIGTERM propagation




Spot Capacity Management in k8s

k8s nodepools: nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:

pool-one- - matchExpressions:

pool-one-spot + on-
demand

- key: nodepool-name
operator: In

values:
pool-two-
pool-two-spot + on-

demand

- pool-one-spot
- pool-one-on-demand
preferredDuringSchedulingIgnoredDuringExecution:
- weight: 100
preference:

matchExpressions:

AUtomatlca"y labelled: - key: cloud.google.com/gke-spot

karpenter.sh/capacity-type: spot operator: In
values:

eks.amazonaws.com/capacityType: SPOT s

cloud.google.com/gke-spot: true



Capacity Management in k8s (cont)

Requirements Constraints
Pending pods: available
nodepools, capacity
affinities, etc

Cluster Autoscaler Priority-based expander,
GKE Cluster Autoscaler is price-optimised,
Karpenter,

Managed Dataplane,

# https://github.com/kubernetes/autoscaler
# higher number - higher priority (not %)
apiVersion: vi
kind: ConfigMap
metadata:
name: cluster-autoscaler-priority-expander
namespace: kube-system

data:
priorities: |-
10:
- .*on-demand.*
50:

- .*spot.*
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Unexpected Twists




We Broke Everything (but not really)

PF READY RESTARTS STATUS CPU
-66b95c8b9c-292qt /2 0 Running
6754 f-mhvd2 Running

Running

Running

elop-865b95584d-1sn8p Running
—-7d4df9dbf8-2q5dp Running

849696986-14frx Running
Running
Running
Running

Running
Running

OutOfpods, Error, NotReady,

ContainerStatusUknown,
NodeShutdown, Terminated,
Init:ContainerStatusUnknown

and morel!! ¢

Status Type

© OutOfcpu Deployment
@ OutOfcpu Deployment
© OutOfcpu Deployment
© OutOfcpu Deployment
@ OutOfcpu Deployment

@ OutOfcpu Deployment

© OutOfcpu Deployment

Mingressgateway-564594c67c-njcdm
[lingressgateway-564594c67c-nlrdp
Pl ingressgateway-564594c67c-nz63j2

ingressgateway-564594c67c-pqvdk
ingressgateway-564594c67c-psf8t
ingressgateway-564594c67c-q9471
ingressgateway-564594c67c-qcwlg
ingressgateway-564594c67c-qp8lj
ingressgateway-564594c67c-qqg9n
ingressgateway-564594c67c-t9fhm
ingressgateway-564594c67c-v8wg8
ingressgateway-564594c67c-xf7dd
ingressgateway-564594c67c-xfbds

Namespace

0/1
171
0/1
171
171
171
171
0/1
0/1
0/1
171
171
0/1

Cluster

NodeAffinity
Running

Completed <(mmfe—

Terminated
Running
Running
Running

NodeAffinity <@

NodeAffinity
NodeAffinity
Running
Running
NodeAffinity

0
0

0
0
0
0

SIS RIS IS

Pods Running

NN NN NN

Pods Desired

NN NN NN

6d15h

37h
165

® ® 6d15h

2d%h
2d9h
6d15h

e 3 6d15h

= ) 6d15h
6d15h
6d15h
2d9h
6d15h



NodeAffinity

S kubectl get pod Sname -o yaml

status:
message: Pod Predicate NodeAffinity failed
phase: Failed
reason: NodeAffinity

Warning NodeAffinity 41m kubelet Predicate NodeAffinity failed

Warning FailedMount 2m21s (x3870 over 5d16h) kubelet MountVolume.SetUp failed for volume
"xxxx": object "<namespace>="/"<name>" not registered

Warning FailedMount 26s (x28 over 41m) kubelet MountVolume.SetUp failed for volume

kube-api-access-12345: object "my-ns"/ "kube-root-ca.crt” not registered



Additional Challenges

e Preemption and availability is only the beginning.
o Preempting many busy nodes at once causes many pods to start at
the same time one a new node
m OutOfcpu
m OutOfpods
o Automatic VM reclamation causes VM replacement for the same
node and kubelet restart
m  NodeAffinity



How'’s This Deployment Doing?

S kubectl get pod -1 k8s-app=my-app

NAME READY  STATUS
my-app-564594c67c-njcdm  0/1 NodeAffinity
my-app-564594c67c-nlrdp 1/1 Running
my-app-564594c67c-nz63j2 0/1 Completed
my-app-564594c67c-pqvdk 1/1 Terminated
my-app-564594c67c-psf8t 1/1 Running
my-app-564594c67c-qcw2g 1/1 Running
my-app-564594c67c-qp81j 0/1 NodeAffinity
my-app-564594c67c-qqg9n 0/1 NodeAffinity
my-app-564594c67c-t9fhm 0/1 NodeAffinity
my-app-564594c67c-v8wq8 1/1 Running

S kubectl get deploy -1 k8s-app=my-app
NAME READY  UP-TO-DATE  AVAILABLE AGE
my-app 4/4 4 4 48d

RESTARTS

O 0O ®O ®O O O OO OO

$ kubectl get pods --field-selector status.phase=Failed

AGE
6d15h
37h
6d15h
6d15h
2d9
6d15h
6d15h
6d15h
6d15h
6d15h

Failed pods:

don’'t consume resources, don't
count towards pods per node,
don't count in controllers.

Just objects in etcd.

The only real harm these pods
cause is confusion.
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Mitigations and Takeaways




Monitoring and Alerting

e Platform Critical User Journeys (CUJ) and SLOs
o Confidence for platform consumers and Platform Engineering around
platform stability.
o Alert on error budget burn
e Monitoring
o Rate of preemptions - insights and troubleshooting, but don't alert.

o Pod/node churn



Descheduler

https:/github.com/kubernetes-sigs/descheduler

Finds pods that can be moved according to configurable policies and
evicts them.

Example policies useful in Spot clusters:
e Remove Failed pods
e Rebalance Availability Zones
e Spread pods across nodes


https://github.com/kubernetes-sigs/descheduler

Free Chaos Engineering

k8s best practices applicable to on-demand and crucial on Spot:

e Replication

e Spread across zones and nodes (TSCIT], pod AntiAffinity)

e Graceful shutdown

e Probes, especially StartUp

e Tier applications by priority

e PDBs. Don't protect from Spot preemptions, but improve overall
reliability

1] new features: https:/kubernetes.io/blog/2023/04/17/fine-grained-pod-topology-spread-features-beta/



https://kubernetes.io/blog/2023/04/17/fine-grained-pod-topology-spread-features-beta/

