Managing Kubernetes
AUSTRALIA Clusters on Spot Instances

KUBERNETES COMMUNITY DAY

AUGUST 22 Olga Mirensky, Platform Engineer,

ANZx

I 17

(LTI
NI

(NN

(NI

M=
(M=

iyl

Agenda

e Motivation for Spot Instances
o Reserved Instances (RIl), Committed User Discounts (CUD), etc.
o Spot Instances

o Focus on underlying VMs cost, not workload right-sizing

Managing k8s and applications running on Spot
e Unknown unknowns

e Takeaways

Compute Backed by Availability SLA

e On-demand

e Resource Based
o Reserved Instances (RI), Convertible, Committed Use Discounts (CUD)
o AWS: 1yr - 40%, 3yr - 60%
o GCP:1yr - 37%, 3yr - up to 57% / '70%
e Spend Based
o AWS Saving Plans: 3yr - up to 72%
o GCP Flex CUD: 1yr - 28%, 3yr - 46%

Long-term commitment & doesn’t cover 100% of your compute

Spot Instances 10,000 Foot Overview

Discount

Notice

Price Update

Options (not
exhaustive)

Price Insights

) Google Cloud
60 - 91%

30 sec

Once a month

One size fits all

Difficult. API, Cost
table

aws
70 - 90%

2 min,
Rebalance
recommendation

Can be frequent

Price and/or capacity
optimised

Easy. aws ec2
describe-spot-price-hi
story”

Spot instance advisor

/AAzure
Up to 90%

30 sec

Variable

Set your own max
price

Portal price/eviction
history, API

Ao

AUSTRALIA

KUBERNETES COMMUNITY DAY

AUGUST 22

Common Patterns

Handling Spot Preemptions

Stateless)\ Stateful
Interactive web applications I\ CICD (e.g. terraform
Batch processing jobs apply)

Application Graceful Shutdown
e SIGTERM handler
e Stop accepting new work

e Finalise in-flight work Preemption notice: 30 sec

K8s Node Graceful Shutdown > >

e Node NotReady Worl;l;)ad pods SystSem pods
sec sec

e SIGTERM propagation

Spot Capacity Management in k8s

k8s nodepools: nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:

pool-one- - matchExpressions:

pool-one-spot + on-
demand

- key: nodepool-name
operator: In

values:
pool-two-
pool-two-spot + on-

demand

- pool-one-spot
- pool-one-on-demand
preferredDuringSchedulingIgnoredDuringExecution:
- weight: 100
preference:

matchExpressions:

AUtomatlca"y labelled: - key: cloud.google.com/gke-spot

karpenter.sh/capacity-type: spot operator: In
values:

eks.amazonaws.com/capacityType: SPOT s

cloud.google.com/gke-spot: true

Capacity Management in k8s (cont)

Requirements Constraints
Pending pods: available
nodepools, capacity
affinities, etc

Cluster Autoscaler Priority-based expander,
GKE Cluster Autoscaler is price-optimised,
Karpenter,

Managed Dataplane,

https://github.com/kubernetes/autoscaler
higher number - higher priority (not %)
apiVersion: vi
kind: ConfigMap
metadata:
name: cluster-autoscaler-priority-expander
namespace: kube-system

data:
priorities: |-
10:
- .*on-demand.*
50:

- .*spot.*

Ao

AUSTRALIA

KUBERNETES COMMUNITY DAY

AUGUST 22

Unexpected Twists

We Broke Everything (but not really)

PF READY RESTARTS STATUS CPU
-66b95c8b9c-292qt /2 0 Running
6754 f-mhvd2 Running

Running

Running

elop-865b95584d-1sn8p Running
—-7d4df9dbf8-2q5dp Running

849696986-14frx Running
Running
Running
Running

Running
Running

OutOfpods, Error, NotReady,

ContainerStatusUknown,
NodeShutdown, Terminated,
Init:ContainerStatusUnknown

and morel!! ¢

Status Type

© OutOfcpu Deployment
@ OutOfcpu Deployment
© OutOfcpu Deployment
© OutOfcpu Deployment
@ OutOfcpu Deployment

@ OutOfcpu Deployment

© OutOfcpu Deployment

Mingressgateway-564594c67c-njcdm
[lingressgateway-564594c67c-nlrdp
Pl ingressgateway-564594c67c-nz63j2

ingressgateway-564594c67c-pqvdk
ingressgateway-564594c67c-psf8t
ingressgateway-564594c67c-q9471
ingressgateway-564594c67c-qcwlg
ingressgateway-564594c67c-qp8lj
ingressgateway-564594c67c-qqg9n
ingressgateway-564594c67c-t9fhm
ingressgateway-564594c67c-v8wg8
ingressgateway-564594c67c-xf7dd
ingressgateway-564594c67c-xfbds

Namespace

0/1
171
0/1
171
171
171
171
0/1
0/1
0/1
171
171
0/1

Cluster

NodeAffinity
Running

Completed <(mmfe—

Terminated
Running
Running
Running

NodeAffinity <@

NodeAffinity
NodeAffinity
Running
Running
NodeAffinity

0
0

0
0
0
0

SIS RIS IS

Pods Running

NN NN NN

Pods Desired

NN NN NN

6d15h

37h
165

® ® 6d15h

2d%h
2d9h
6d15h

e 3 6d15h

=) 6d15h
6d15h
6d15h
2d9h
6d15h

NodeAffinity

S kubectl get pod Sname -o yaml

status:
message: Pod Predicate NodeAffinity failed
phase: Failed
reason: NodeAffinity

Warning NodeAffinity 41m kubelet Predicate NodeAffinity failed

Warning FailedMount 2m21s (x3870 over 5d16h) kubelet MountVolume.SetUp failed for volume
"xxxx": object "<namespace>="/"<name>" not registered

Warning FailedMount 26s (x28 over 41m) kubelet MountVolume.SetUp failed for volume

kube-api-access-12345: object "my-ns"/ "kube-root-ca.crt” not registered

Additional Challenges

e Preemption and availability is only the beginning.
o Preempting many busy nodes at once causes many pods to start at
the same time one a new node
m OutOfcpu
m OutOfpods
o Automatic VM reclamation causes VM replacement for the same
node and kubelet restart
m NodeAffinity

How'’s This Deployment Doing?

S kubectl get pod -1 k8s-app=my-app

NAME READY STATUS
my-app-564594c67c-njcdm 0/1 NodeAffinity
my-app-564594c67c-nlrdp 1/1 Running
my-app-564594c67c-nz63j2 0/1 Completed
my-app-564594c67c-pqvdk 1/1 Terminated
my-app-564594c67c-psf8t 1/1 Running
my-app-564594c67c-qcw2g 1/1 Running
my-app-564594c67c-qp81j 0/1 NodeAffinity
my-app-564594c67c-qqg9n 0/1 NodeAffinity
my-app-564594c67c-t9fhm 0/1 NodeAffinity
my-app-564594c67c-v8wq8 1/1 Running

S kubectl get deploy -1 k8s-app=my-app
NAME READY UP-TO-DATE AVAILABLE AGE
my-app 4/4 4 4 48d

RESTARTS

O 0O ®O ®O O O OO OO

$ kubectl get pods --field-selector status.phase=Failed

AGE
6d15h
37h
6d15h
6d15h
2d9
6d15h
6d15h
6d15h
6d15h
6d15h

Failed pods:

don’'t consume resources, don't
count towards pods per node,
don't count in controllers.

Just objects in etcd.

The only real harm these pods
cause is confusion.

Ao

AUSTRALIA

KUBERNETES COMMUNITY DAY

AUGUST 22

Mitigations and Takeaways

Monitoring and Alerting

e Platform Critical User Journeys (CUJ) and SLOs
o Confidence for platform consumers and Platform Engineering around
platform stability.
o Alert on error budget burn
e Monitoring
o Rate of preemptions - insights and troubleshooting, but don't alert.

o Pod/node churn

Descheduler

https:/github.com/kubernetes-sigs/descheduler

Finds pods that can be moved according to configurable policies and
evicts them.

Example policies useful in Spot clusters:
e Remove Failed pods
e Rebalance Availability Zones
e Spread pods across nodes

https://github.com/kubernetes-sigs/descheduler

Free Chaos Engineering

k8s best practices applicable to on-demand and crucial on Spot:

e Replication

e Spread across zones and nodes (TSCIT], pod AntiAffinity)

e Graceful shutdown

e Probes, especially StartUp

e Tier applications by priority

e PDBs. Don't protect from Spot preemptions, but improve overall
reliability

1] new features: https:/kubernetes.io/blog/2023/04/17/fine-grained-pod-topology-spread-features-beta/

https://kubernetes.io/blog/2023/04/17/fine-grained-pod-topology-spread-features-beta/

