
Managing Kubernetes
Clusters on Spot Instances
Olga Mirensky, Platform Engineer,

ANZx

Agenda
● Motivation for Spot Instances

○ Reserved Instances (RI), Committed User Discounts (CUD), etc.

○ Spot Instances

○ Focus on underlying VMs cost, not workload right-sizing

● Managing k8s and applications running on Spot

● Unknown unknowns

● Takeaways

Compute Backed by Availability SLA
● On-demand

● Resource Based
○ Reserved Instances (RI), Convertible, Committed Use Discounts (CUD)
○ AWS: 1yr - 40%, 3yr - 60%
○ GCP: 1yr - 37%, 3yr - up to 57% / 70%

● Spend Based
○ AWS Saving Plans: 3yr - up to 72%
○ GCP Flex CUD: 1yr - 28%, 3yr - 46%

Long-term commitment & doesn’t cover 100% of your compute

Spot Instances 10,000 Foot Overview

Discount 60 - 91% 70 - 90% Up to 90%

Notice 30 sec 2 min,
Rebalance
recommendation

30 sec

Price Update Once a month Can be frequent Variable

Options (not
exhaustive)

One size fits all Price and/or capacity
optimised

Set your own max
price

Price Insights Difficult. API, Cost
table

Easy. `aws ec2
describe-spot-price-hi
story`
Spot instance advisor

Portal price/eviction
history, API

Common Patterns

Handling Spot Preemptions
✅ Stateless
✅ Interactive web applications
✅ Batch processing jobs

⚠ Stateful
⚠ CICD (e.g. terraform
apply)

Application Graceful Shutdown
● SIGTERM handler
● Stop accepting new work
● Finalise in-flight work

K8s Node Graceful Shutdown
● Node NotReady
● SIGTERM propagation

Preemption notice: 30 sec

Workload pods
25 sec

System pods
5 sec

Spot Capacity Management in k8s

pool-one-
on-

demand
pool-one-spot

…

nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: nodepool-name
 operator: In
 values:
 - pool-one-spot
 - pool-one-on-demand
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 100
 preference:
 matchExpressions:
 - key: cloud.google.com/gke-spot
 operator: In
 values:
 - true

pool-two-
on-

demand
pool-two-spot

Automatically labelled:

karpenter.sh/capacity-type: spot

eks.amazonaws.com/capacityType: SPOT

cloud.google.com/gke-spot: true

k8s nodepools:

Capacity Management in k8s (cont)

https://github.com/kubernetes/autoscaler
higher number - higher priority (not %)
apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-autoscaler-priority-expander
 namespace: kube-system
data:
 priorities: |-
 10:
 - .*on-demand.*
 50:
 - .*spot.*

Requirements

Pending pods:
nodepools,
affinities, etc

Constraints

available
capacity

Cluster Autoscaler Priority-based expander,
GKE Cluster Autoscaler is price-optimised,
Karpenter,
Managed Dataplane,
…

Unexpected Twists

We Broke Everything (but not really)

🤔

⁉
OutOfpods, Error, NotReady,

ContainerStatusUknown,

NodeShutdown, Terminated,

Init:ContainerStatusUnknown

and more!! 󰷺

NodeAffinity

Warning NodeAffinity 41m kubelet Predicate NodeAffinity failed

Warning FailedMount 2m21s (x3870 over 5d10h) kubelet MountVolume.SetUp failed for volume

. "xxxx": object "<namespace>"/"<name>" not registered

Warning FailedMount 26s (x28 over 41m) kubelet MountVolume.SetUp failed for volume

. kube-api-access-12345: object "my-ns"/"kube-root-ca.crt" not registered

$ kubectl get pod $name -o yaml
…
status:
 message: Pod Predicate NodeAffinity failed
 phase: Failed
 reason: NodeAffinity

Additional Challenges
● Preemption and availability is only the beginning.

○ Preempting many busy nodes at once causes many pods to start at

the same time one a new node

■ OutOfcpu

■ OutOfpods

○ Automatic VM reclamation causes VM replacement for the same

node and kubelet restart

■ NodeAffinity

How’s This Deployment Doing?
$ kubectl get pod -l k8s-app=my-app
NAME READY STATUS RESTARTS AGE
my-app-564594c67c-njcdm 0/1 NodeAffinity 0 6d15h
my-app-564594c67c-nlrdp 1/1 Running 0 37h
my-app-564594c67c-nz6j2 0/1 Completed 0 6d15h
my-app-564594c67c-pqvdk 1/1 Terminated 0 6d15h
my-app-564594c67c-psf8t 1/1 Running 0 2d9h
my-app-564594c67c-qcw2g 1/1 Running 0 6d15h
my-app-564594c67c-qp81j 0/1 NodeAffinity 0 6d15h
my-app-564594c67c-qqg9n 0/1 NodeAffinity 0 6d15h
my-app-564594c67c-t9fhm 0/1 NodeAffinity 0 6d15h
my-app-564594c67c-v8wq8 1/1 Running 0 6d15h

$ kubectl get deploy -l k8s-app=my-app
NAME READY UP-TO-DATE AVAILABLE AGE
my-app 4/4 4 4 48d

Failed pods:
don’t consume resources, don’t
count towards pods per node,
don’t count in controllers.
Just objects in etcd.

The only real harm these pods
cause is confusion.

$ kubectl get pods --field-selector status.phase=Failed

Mitigations and Takeaways

Monitoring and Alerting
● Platform Critical User Journeys (CUJ) and SLOs

○ Confidence for platform consumers and Platform Engineering around

platform stability.

○ Alert on error budget burn

● Monitoring

○ Rate of preemptions - insights and troubleshooting, but don’t alert.

○ Pod/node churn

Descheduler
https://github.com/kubernetes-sigs/descheduler

Finds pods that can be moved according to configurable policies and
evicts them.

Example policies useful in Spot clusters:
● Remove Failed pods
● Rebalance Availability Zones
● Spread pods across nodes

https://github.com/kubernetes-sigs/descheduler

Free Chaos Engineering
k8s best practices applicable to on-demand and crucial on Spot:
● Replication
● Spread across zones and nodes (TSC[1], pod AntiAffinity)
● Graceful shutdown
● Probes, especially StartUp
● Tier applications by priority
● PDBs. Don’t protect from Spot preemptions, but improve overall

reliability

[1] new features: https://kubernetes.io/blog/2023/04/17/fine-grained-pod-topology-spread-features-beta/

https://kubernetes.io/blog/2023/04/17/fine-grained-pod-topology-spread-features-beta/

